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CONSTRUCTION OF PBIB DESIGNS WITH TRIANGULAR AND L2 SCHEMES

by

G.M. Constantine and A. Hedayat
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and

University of Illinois, Chicago

ABSTRACT

Simple methods of construction lead to families of PBIB designs with

triangular and L2 schemes. The construction can be carried out in s

dimensions to obtain PBIB designs with at most s associate classes. A

family of such PBIB designs(indexed by the block size) has the desirable

statistical property that a pair of distinct varieties appears in at most

one block.
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1. Introduction

An imcomplete block design is a k x b array with entries from the set

of varieties 1,2,...,v} , with k < v. The columns of the array are called

blocks. An incomplete block design is called binary if all the blocks

consist of distinct varieties.

A relation of association among the v varieties is said to be a

triangular association scheme if v = )and the v varieties appear as the

upper-diagonal(and symmetrically as the lower-diagonal) entries of an n x n

square array with the diagonal entries left blank. Two varieties are first

associates if they lie in the same row or column; otherwise they are

second associates.

An association scheme is called of the L2 type if v = n2 and the

varieties can be arranged in a square in such a way that two varieties are

first associates if they appear in the same row or column and second associates

otherwise.

A triangular (respectively L2) Partially Balanced Incomplete Block(PBIB)

design with two associate classes is a binary incomplete block design in which

the v varities form a traingular(respectively L2) association scheme; first
2

associates occur together in 1 blocks and second associates occur in A2

blocks of the design.

The PBIB designs have been developed by Bose and Nair(1939). Substantial

work followed in classifying and analyzing these designs. Construction of

triangular PBIB designs was done by Shrikhande(1952), Youden(1951), Bose

and Shimamoto(1952), Chang, Liu and Liu(1965), Masuyama(1965), Liu and

Chang(1964) and others. Among the constructions of L2 PBIB designs we mention

those by Yates(1936), Shrikhande(1959), Clatworthy(1967), Chang and Liu(1964)

and Vartak(1955).
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This paper presents easy and direct ways of constructing families of

PBIB designs with triangular and L2 association schemes. The method is

applicable to higher dimensions; it yields PBIB designs with more than two

associate classes.

In the case of triangular PBIB designs, the procedure described by

Clatworthy(1956) with v =(n),b - , r - n-2, k = 3,A 1 - 1 and A2 = 0

is a special case of our construction.

For every block size k(->2) we obtain a family of PBIB designs with

parameters

v =(k) b =(k), k , r = n-k+l

A 1  1, A 2  X 3 =...= Ak 1 =0.

A design in this family has the property that any pair of distinct varieties

appears in at most one block, a property which has partly been proved (and is

generally believed) to ensure high statistical efficiency. Examples are

intercalated to add to clarity.

For convenience we let( )_ 0 form negative.

2. Construction

Let T be the n x n symmetrical array with its diagonal entries left blank

and the 2) varieties arranged in the upper (and lower) diagonal part of T.

Theorem 2.1. The distinct varieties common to m rows and the same m

columns of T is defined to be a block. When all such choices of m rows

and same m columns are considered we obtain a triangular PBIB design with

v "12) b . (n) , k . (m), r . (n-21" 1 = -n-3) n-2 :4)

2 b() k 2') r m-2~)' IA m-3 and A2 (m-4)

These PBIB designs exist for all 2 5 m - n and all n k 4.

Proof: Firstly observe that no matter what row (and same column)

permutations are done to T, the incomplete block design that results

(by applying the process described in the statement of the theorem to such



*permuted T) is the same as the one that results from T itself. Any

variety can be brought in position (1,2) in T by such row and column

permutations. Any pair of distinct varieties that are in the same row

or column can be put in positions (1,2) and (1,3) and finally any pair

of distinct varieties not in the same row or column can be brought in

positions (1,2) and (3,4). It is now easy to see that(following the

process described in the theorem) we obtain a PBIB design with two

associate classes, by just counting the number of blocks that contain

varieties in these positions.

As an illustration, let n -a 5 and m - 3. The triangular scheme is:

T 2 5 * 8 9

3 6 8 * 10

4 7 9 10 *

and the resulting PBIB design with v - 10, b - 10, k - 3, r = 3, A1,

and A 2- 0 is:

5 6 7 8 9 10 8 9 10 10

First associates of 1 are 2,3,4,5,6,7; second associates of 1 are 8,9 and 10.

There are exactly two subfamilies of designs in Theorem 2.1 for which

A and A 2differ by one. The first is (for m -3):

v n b n'~) k - 3, r -n-2, A1 ur 1, 2A3 2 - 0

and the second one is (for m -n-)

vurn) b -mn, k (n-1) 0 r n-2,\n A.i0

Denote by S the n x n square array consisting of n 2varieties.



Theorem 2.2.. Define a block to be the set of varieties common to m rows

and (not necessarily same) m columns of S. When all choices of m rows

and (independently) all choices of m columns are considered we obtain a

PBIB design with an L scheme and with v =,n 2, b =(n)2, k = m 2, r

A1 " ) and A-2 (M Such PBIB designs exist for all

I :5m 5 n and all n > 2.

Proof: The procedure outlined in the statement of the theorem leads to the

same incomplete block design when applied to any array obtained from S by

(independent) row and column operations. With this observation it is easy

to see that such a design will be a PBIB design with parameters as indicated

in the theorem. This concludes our proof.

As an illustrative example, consider the simplest case with n = 3

and m =2. The scheme is

1 2 3

S= 4 5 6

7 8 9

and the associated PBIB design is:

1 1 2 1 1 2 4 4 5
2 3 5 7 3 8 5 6 8

4 4 3 2 7 3 7 7 6

5 6 6 8 9 9 8 9 9.

The parameters of this design are

v = 9, b = 9, k - 4, r = 4, A 1  2 and A 2  .

This is the only design in the family of designs described in Theorem 2.2

for which A1 and A 2 differ by one. First associates of 1 are 2,3,4,7 and

second associates are 5,6,8,9.
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3. Multidimensional extensions

(a) Theorem 2.1 can be extended to more than two dimensions in the

following way. Initially identify each variety by an s-plet (ii 2,..., is)

where the symbols i. satisfy 1 -< 1 < <. < i -< n. We hence have (n)
1 s s

varieties. Arrange the varieties (as s-plets) in lexicographical order.

Then relabel them 1 through (n)

We index the blocks by the subsets of size m of the set of the n symbols.

For a subset of size m let the block be the collection of s-plets(varieties)

that consist of only those symbols that belong to the subset. For this we

of course need s m <- n. This construction yields (n) blocks of size(m)m (S)

They form a PBIB design with parameters

v n)= b = in, k = (m r =  ,ns
S m s M-s

and n--i

i m-s-i'

It is easily seen that a design as above has a generalized triangular

scheme with two varieties (as s-plets) being ith associates if they differ in

exactly i coordinates. These PBIB designs exist for all s 5 m 5 n.

Of particular importance is the case when m = s+l(=k), for the reasons

mentioned in the introduction. The parameters are:

k.) , b kI = n k ,r = n-k+l

A 1 and 2 = A 3 = =A =0.
1 2 3k-l

We explicit this construction on an example. Let s = 3, m = 4 and n = 6.

The varieties are:

I- (123), 2 - (124), 3 = (125), 4 = (126), 5 - (134),

6 - (135), 7 - (136), 8 = (145), 9 - (146),10 = (156),

11- (234),12 - (235),13 - (236),14 - (245),15 = (246),

16- (256),17 - (345),18 - (346),19 - (356),20 = (456).

index /1 1 1 1 1 1 1 1 1 1 2 2 2 2 3

of 2 2 2 2 2 2 3 3 3 4 3 3 3 4 4

blocks: 3 3 3 4 4 5 4 4 5 5 4 4 5 5 5
4 5 6 5 6 6 5 6 6 6 5 6 6 6 6



1 1 1 2 2 3 5 5 6 8 11 11 12 14 17

PBIB 2 3 4 3 4 4 6 7 7 9 12 13 13 15 18
design: 5 6 7 8 9 10 8 9 10 10 14 15 16 16 19

11 12 13 14 15 16 17 18 19 20 17 18 19 20 20

The parameters are:

v = 20, b = 15, k = 4, r = 3, l , A2 = 0, A3 = 0.

The first associates of 1 are 2,3,4,5,6,7,11,12,13; second associates are

8,9,10,14,15,16,17,18,19 and 20 is the only third associate.

(b) The content of Theorem 2.2 can be extended as follows: Consider a hypercube
5

C of dimension s. Place the n varieties as entries of this hypercube. Choose

independently m( < n) components along each one of the s coordinates. A block
5

is defined as the collection of the m varieties whose coordinates belong to

the chosen set of m components along each coordinate. When all the (n) choices

of components are independently considered along each coordinate we obtain a PBIB

design with s associate classes with parameters.

vnS, b=(n) s k=m , rv-nb=m 'm-1

and A, s--i 1 i s.

Two varieties are i th associates if they differ in exactly i coordinates as

points of the hypercube. For any n, any s and any 1 !5 m !5 n - 1 such PBIB

designs can be constructed.

As an example, consider the case with s = 3, n = 3 and m = 2. We have 27

varieities and 27 blocks of size 8. By carrying out the construction we outlined

we obtain the following PBIB design:

1 1 10 1 1 10 2 2 11

2 2 11 3 3 12 3 3 12

4 4 13 4 4 13 5 5 14

5 5 14 6 6 15 6 6 15

10 19 19 10 19 19 11 20 20

11 20 20 12 21 21 12 21 21

13 22 22 13 22 22 14 23 23

14 23 23 15 24 24 15 24 24

... .. -... .". . .. .-II II 1 - 1 1 . , 1



1 1 10 1 1 10 2 2 11

2 2 11 3 3 12 3 3 12

7 7 16 7 7 16 8 8 17

8 8 17 9 9 18 9 9 18

10 19 19 10 19 19 11 20 20

11 20 20 12 21 21 12 21 21

16 25 25 16 25 25 17 26 26

17 26 26 18 27 27 18 27 27

4 4 13 4 4 13 5 5 14
5 5 14. 6 6 15 6 6 15

7 7 16 7 7 16 8 8 17

8 8 17 9 9 18 9 9 18

13 22 22 13 22 22 14 23 23

14 23 23 15 24 24 15 24 24

16 25 25 16 25 25 17 26 26

17 26 26 18 27 27 18 27 27

Variety 1 has 2,3,4,7,10,19 as first associates; 5,6,8,9,11,12,20,21,13,

16,22,25 as second associates and 14,15,17,18,23,24,26,27 as third

associates. In this case r =8, N1 4 , A 2 =2 and A3 =1.
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